Send to

Choose Destination
See comment in PubMed Commons below
EMBO J. 2003 Apr 1;22(7):1467-77.

Elucidation of substrate binding interactions in a membrane transport protein by mass spectrometry.

Author information

Department of Physiology, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095-1662, USA.


Integration of biochemical and biophysical data on the lactose permease of Escherichia coli has culminated in a molecular model that predicts substrate-protein proximities which include interaction of a hydroxyl group in the galactopyranosyl ring with Glu269. In order to test this hypothesis, we studied covalent modification of carboxyl groups with carbodiimides using electrospray ionization mass spectrometry (ESI-MS) and demonstrate that substrate protects the permease against carbodiimide reactivity. Further more, a significant proportion of the decrease in carbodiimide reactivity occurs specifically in a nanopeptide containing Glu269. In contrast, carbodiimide reactivity of mutant Glu269-->Asp that exhibits lower affinity is unaffected by substrate. By monitoring the ability of different substrate analogs to protect against carbodiimide modification of Glu269, it is suggested that the C-3 OH group of the galactopyranosyl ring may play an important role in specificity, possibly by H-bonding with Glu269. The approach demonstrates that mass spectrometry can provide a powerful means of analyzing ligand interactions with integral membrane proteins.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center