Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4018-23. Epub 2003 Mar 24.

Recombination signal sequence-binding protein Jkappa alters mesodermal cell fate decisions by suppressing cardiomyogenesis.

Author information

  • 1GSF-National Research Center for Environment and Health, Institute of Clinical Molecular Biology and Tumor Genetics, Marchioninistrasse 25, 81377 Munich, Germany.


The transcription factor recombination signal sequence-binding protein Jkappa (RBP-J) is a key downstream element in the signaling pathway of all four mammalian Notch receptors that are critically involved in the control of embryonic and adult development. RBP-J-deficient mice display complex defects and die around day 9.5 postcoitum. Here, we investigate the function of RBP-J in the development of mesodermal cell lineages by using the OP9 stroma coculture system. RBP-J-deficient embryonic stem (ES) cells gave rise to cardiomyocytes, endothelial cells, and primitive and definitive hematopoietic cells. Thus, RBP-J-mediated signals are not required for generation of these cell types. However, when compared with parental RBP-J-expressing ES cells, cardiomyogenesis derived from RBP-J-deficient ES cells was increased. Repression over the cardiogenic pathway was restored by expressing RBP-J in RBP-J-deficient ES cells. Our data indicate that Notch signaling via RBP-J plays an important role for the correct specification of myocardial cell fates.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk