Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2003 May 23;278(21):19038-43. Epub 2003 Mar 24.

Mechanism of the targeting action of DnaJ in the DnaK molecular chaperone system.

Author information

  • 1Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.


In the DnaK (Hsp70) molecular chaperone system of Escherichia coli, the substrate polypeptide is fed into the chaperone cycle by association with the fast-binding, ATP-liganded form of the DnaK. The substrate binding properties of DnaK are controlled by its two cochaperones DnaJ (Hsp40) and GrpE. DnaJ stimulates the hydrolysis of DnaK-bound ATP, and GrpE accelerates ADP/ATP exchange. DnaJ has been described as targeting the substrate to DnaK, a concept that has remained rather obscure. Based on binding experiments with peptides and polypeptides we propose here a novel mechanism for the targeting action of DnaJ: ATP.DnaK and DnaJ with its substrate-binding domain bind to different segments of one and the same polypeptide chain forming (ATP.DnaK)m.substrate.DnaJn complexes; in these ternary complexes efficient cis-interaction of the J-domain of DnaJ with DnaK is favored by their propinquity and triggers the hydrolysis of DnaK-bound ATP, converting DnaK to its ADP-liganded high affinity state and thus locking it onto the substrate polypeptide.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk