Format

Send to

Choose Destination
See comment in PubMed Commons below
Tree Physiol. 1998 Jan;18(1):1-9.

Organic and inorganic sulfur transport in the xylem sap and the sulfur budget of Picea abies trees.

Author information

1
Lehrstuhl Pflanzenökologie I der Universität Bayreuth, 95440 Bayreuth, Germany.

Abstract

Temporal changes in inorganic and organic sulfur compounds (sulfate, glutathione, cysteine, methionine) were analyzed in xylem sap of 40-year-old Norway spruce (Picea abies (L.) Karst.) trees growing on acidic soils at a healthy and a declining stand in the Fichtelgebirge (North Bavaria, Germany). Studies were carried out (1) to quantify glutathione (GSH) transport in the xylem of spruce, (2) to study the significance of reduced sulfur versus sulfate (SO(4) (2-)) transport in the xylem, and (3) to compare total sulfur (S) transport in the xylem with the amount of foliar uptake of SO(2) in an air-polluted environment. Glutathione was the main reduced S compound in the xylem ranging in concentration from 0.5 to 5 &mgr;mol l(-1). Concentrations of inorganic SO(4) (2-) in the xylem sap were up to 50 times higher than those of GSH ranging from 60 to 230 &mgr;mol l(-1). During the growing season, concentrations of all S compounds in the xylem were highest in May (up to 246 &mgr;mol l(-1)) and decreased during summer and fall (up to 21 &mgr;mol l(-1)). On average, SO(4) (2-) concentrations in xylem sap were 30% higher at the declining site compared with the healthy site. Diurnal changes in organic S compounds were significant for GSH and cysteine with high concentrations during the night and low concentrations during the day. Diurnal changes in inorganic concentrations were not significant. Xylem sap concentrations of SO(4) (2-) and cysteine were twice as high and GSH concentrations were tenfold higher in surface roots than in branches. At both sites, transport of organic S was low (up to 3% of total S) compared to transport of SO(4) (2-). Annual transport of total S in the xylem (SO(4) (2-) was the main component) ranged from 60 to 197 mmol tree(-1) year(-1) at the healthy site and from 123 to 239 mmol tree(-1) year(-1) at the declining site. Although gaseous uptake of SO(2) was estimated to be similar at both sites (38 mmol tree(-1) year(-1); Horn et al. 1989), the ratio between annual gaseous uptake of SO(2) and transport of S in the xylem was 1:4 and 1:5 at the healthy and declining sites, respectively.

PMID:
12651293
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center