Format

Send to

Choose Destination
J Invest Dermatol. 2003 Apr;120(4):512-22.

K6irs1, K6irs2, K6irs3, and K6irs4 represent the inner-root-sheath-specific type II epithelial keratins of the human hair follicle.

Author information

1
German Cancer Research Center, Department of Cell Biology, Heidelberg, Germany. L.Langbein@dkfz.de

Abstract

In this study we report on the cloning of two novel human type II keratin cDNAs, K6irs3 and K6irs4, which were specifically expressed in the inner root sheath of the hair follicle. Together with the genes of two previously described type II inner root sheath keratins, K6irs1 and K6irs2, the K6irs3 and K6irs4 genes were subclustered in the type II keratin/hair keratin gene domain on chromosome 12q13. Evolutionary tree analysis using all known type II epithelial and hair keratins revealed that the K6irs1-4 formed a branch separate from the other epithelial and hair keratins. RNA in situ hybridization and indirect immunofluorescence studies of human hair follicles, which also included the K6irs2 keratin, demonstrated that both K6irs2 and K6irs3 were specifically expressed in the inner root sheath cuticle, but showed a different onset of expression in this compartment. Whereas the K6irs3 expression began in the lowermost bulb region, that of K6irs2 was delayed up to the height of the apex of the dermal papilla. In contrast, the K6irs4 keratin was specifically expressed in the Huxley layer. Moreover, K6irs4 was ideally suited to further investigate the occurrence of Flügelzellen, i.e., Huxley cells, characterized by horizontal cell extensions that pass through the Henle layer, abut upon the companion layer, and form desmosomal connections with the surrounding cells. Previously, we detected Flügelzellen only in the region along the differentiated Henle layer. Using the Huxley-cell-specific K6irs4 antiserum, we now demonstrate this cell type to be clearly apposed to the entire Henle layer. We provide evidence that Flügelzellen penetrate the Henle layer actively and may play a role in conferring plasticity and resilience to the otherwise rigid upper Henle layer.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center