Send to

Choose Destination
See comment in PubMed Commons below
Oecologia. 2003 Mar;135(1):1-9. Epub 2003 Feb 11.

Effects of male sterility on reproductive traits in gynodioecious plants: a meta-analysis.

Author information

Laboratoire d'Ecologie Systématique et Evolution, CNRS UPRESA 8079, Université Paris-Sud XI, Bâtiment 360, 91405 Orsay Cedex, France.


Female fecundity advantage in gynodioecious plants is required for the spread and maintenance of this reproductive system. However, not all reproductive characters show female advantage in all species. We used a meta-analysis to summarise differences between females and hermaphrodites reported from the literature for several reproductive traits. Further we tested three hypotheses, (1) that female plants of species with many ovules produce more seeds per fruit while those with few ovules produce heavier seeds, (2) that females are more pollen limited than hermaphrodites, and (3) that floral sexual size dimorphism is more pronounced in species with few ovules, either because female reproductive success is less limited by pollen availability in such species or because flowers with few ovules require a smaller floral structure to protect the carpels. Overall, females compared to hermaphrodites produced more but smaller flowers, had higher fruit set, higher total seed production, and produced heavier seeds that germinated better. Species with many versus few ovules differed in female advantage for flower size dimorphism, flower number, fruit set and total seed production. However seed size, seed set per fruit and seed germination differences between females and hermaphrodites did not differ significantly between species with few and many ovules. We also found no evidence for differential pollen limitation between females and hermaphrodites. Degree of floral sexual size dimorphism differed significantly between species with few and many ovules. Though pistillate flowers were generally smaller than those of hermaphrodites, species with many ovules showed less difference in flower size between the sexes, suggesting either that the protective role of the perianth constrains the evolution of sexual size dimorphism in species with many ovules or that selection for adequate pollination in species with many ovules impedes the reduction in flower size of females.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center