Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell Endocrinol. 2003 Feb 28;200(1-2):199-202.

The phosphatidylinositol 3-kinase inhibitor LY294002 binds the estrogen receptor and inhibits 17beta-estradiol-induced transcriptional activity of an estrogen sensitive reporter gene.

Author information

Research Unit in Reproductive Medicine, Hospital de Gineco Obstetricia Luis Castelazo Ayala, Instituto Mexicano del Seguro Social, Mexico, D.F., Mexico.


Estrogen receptors (ERs) are members of the superfamily of ligand-activated transcription factors. In addition to the classical, hormone-mediated activation, ERs may alternatively be activated in a ligand-independent manner by a variety of agents including growth factors, neurotransmitters and cAMP. It has been demonstrated that the phosphatidylinositol 3 (PI3)-dependent kinase/Akt pathway may activate the ER alpha by increasing the activity of both estrogen independent activation function-1 and estrogen-dependent activation function-2 domains. The Akt phosphorylation site in the ER is Ser167. Phosphorylation of this residue is inhibited by LY294002, which blocks the PI3-kinase/Akt pathway. In the course of studies examining the effects of LY294002 on ligand-independent activation of ERs in L cells, we found that LY294002 exhibits antiestrogenic effects in a dose-dependent manner. By competition binding assays, we found that LY294002 specifically displaced radiolabelled estradiol from ERs with an IC(50) of 11+/-0.06 nM, being an estradiol competitor as effective as the antiestrogens ICI182,780 (IC(50), 21+/-0.13) and 4-OH-tamoxifen (IC(50), 15+/-0.09). Further, LY294002 irreversibly blocked estrogen-induced transactivation of an estradiol-sensitive reporter gene. These findings are of particular importance in the interpretation of studies demonstrating ERs inactivation by the PI3-kinase inhibitor. Our studies show that an apparent block of ER activation cannot be dissociated from inhibition of ligand-mediated events. Thus, this effect can be the result of the ability of LY294002 to bind the ERs and inhibit transactivation of estrogen-regulated genes.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center