Send to

Choose Destination
Oncogene. 2003 Mar 13;22(10):1517-27.

Interleukin-6 promotes cervical tumor growth by VEGF-dependent angiogenesis via a STAT3 pathway.

Author information

Department of Oncology, National Taiwan University Hospital and National Taiwan Unviersity College of Medicine, Taipei 100, Taiwan.


Interleukin-6 (IL-6) has received particular attention in the pathogenesis of cervical cancer, although the underlying mechanism remains elusive. This study revealed that IL-6 promotes in vivo tumor growth of human cervical cancer C33A cells, but does not substantially alter their in vitro growth kinetics. The in vivo angiogenic assays showed that IL-6 increases angiogenic activity in human cervical cancer cells, an effect that is specifically associated with upregulation of vascular endothelial growth factor (VEGF). Also, using anti-VEGF antibody to block VEGF function significantly inhibited IL-6-mediated angiogenesis and tumor growth in nude mice, strongly supporting the critical role of VEGF in the IL-6-mediated cervical tumorigenesis. Accordingly, the signaling pathway downstream of IL-6/IL-6R responsible for the regulation of VEGF was investigated. Notably, pharmacological inhibition of PI3-K or MAPK failed to inhibit IL-6-mediated transcriptional upregulation of VEGF. Meanwhile, blocking STAT3 pathway with dominant-negative mutant STAT3D effectively abolished IL-6-induced VEGF mRNA. In transient transfections, a luciferase reporter construct containing the full-length 1.5-kb VEGF promoter or a 1.2-kb fragment lacking the known hypoxic-response element also exhibited the same degree of response to IL-6. Additionally, transient transfection of STAT3D downregulated the 1.2-kb VEGF promoter luciferase reporter stimulated by IL-6. Based on the above phenomenon combined with the concomitant increased tumor expression of IL-6 and VEGF in cervical cancer tissues, we conclude that IL-6 may promote cervical tumorigenesis by activating VEGF-mediated angiogenesis via a STAT3 pathway.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center