Send to

Choose Destination
J Neurosci. 2003 Mar 1;23(5):1832-9.

Perinatal neurosteroid levels influence GABAergic interneuron localization in adult rat prefrontal cortex.

Author information

Department of Psychiatry, and Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7178, USA.


Neurosteroids are a class of steroids synthesized de novo in the brain, several of which are potent modulators of GABA(A) receptor function. In developing brain GABA(A) receptor, stimulation plays a trophic role. Cortical levels of the GABAergic neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-THP) vary dramatically across development; during the second week of life, elevated levels of 3alpha,5alpha-THP are associated with decreased GABA(A) receptor function. To determine whether alteration of endogenous 3alpha,5alpha-THP levels during development alters GABAergic interneurons in prefrontal cortex (PFC) at maturity, rat pups were exposed to 3alpha,5alpha-THP (10 mg/kg) on postnatal day 1 (P1), P2, and P5. On P80, frontal cortex tissue was assayed for GABAergic cell localization (parvalbumin and calbindin immunoreactivity), agonist-dependent [(3)H] dizocilpine (MK-801) binding to NMDA receptors in cortical homogenates, muscimol-mediated (36)Cl(-) influx into synaptoneurosomes, and 3alpha,5alpha-THP levels. The localization of parvalbumin-labeled cells was markedly altered; the ratio of cell number in the deep layers (V-VI) versus superficial layers (I-III) of adult PFC increased twofold in animals exposed to 3alpha,5alpha-THP on P1 or P5. Relative microtubule-associated protein-2 and calbindin immunoreactivity were not altered by perinatal 3alpha,5alpha-THP administration. Agonist-dependent [(3)H]MK-801 binding was decreased in PFC but not parietal cortex homogenates, whereas muscimol-mediated (36)Cl(-) influx and 3alpha,5alpha-THP levels were unchanged in frontal cortex of adult males exposed to 3alpha,5alpha-THP on P5. These data are consistent with a change in the distribution of a subset of interneurons in response to neurosteroid exposure and suggest that GABAergic neurosteroids are critical for normal development of GABAergic systems in the PFC.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center