Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2003 Mar 1;23(5):1622-30.

Dopamine modulation of perisomatic and peridendritic inhibition in prefrontal cortex.

Author information

1
Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.

Abstract

The computations underlying cognitive functions are performed by a diversity of interactions between interneurons and pyramidal neurons that are subject to modulatory influences. Here we have used paired whole-cell recording to study the influence of dopamine on local inhibitory circuits involving fast-spiking (FS) and non-FS cells, respectively. We found that dopamine depressed inhibitory transmission between FS interneurons and pyramidal neurons but enhanced inhibition between non-FS interneurons and pyramidal cells. FS inhibitory transmission exhibited properties associated with presynaptic action at D(1) receptors that were not evident in non-FS inhibitory connections. In addition, FS and non-FS interneurons differed morphologically, forming contacts on the perisomatic and peridendritic domains, respectively, of their pyramidal cell targets. These findings provide evidence for both a dual mode of inhibition in prefrontal circuitry and circuit-dependent modulation by dopamine.

PMID:
12629166
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center