Format

Send to

Choose Destination
Xenobiotica. 2003 Feb;33(2):169-80.

Serotonin (5-hydroxytryptamine) glucuronidation in vitro: assay development, human liver microsome activities and species differences.

Author information

1
Comparative and Molecular Pharmacogenetics Laboratory, Tufts University School of Medicine, Boston, MA 02111, USA.

Abstract

1. The main purpose was to develop a high-performance liquid chromatography (HPLC)-based method to assay serotonin glucuronidation activity using liver microsomal fractions. Application of this method was then demonstrated by determining serotonin UDP-glucuronosyltransferase (UGT) enzyme kinetics using human liver microsomes and recombinant human UGT1A6. Interspecies differences were also evaluated using liver microsomes from 10 different mammalian species. 2. Incubation of liver microsomes with serotonin, UDP-glucuronic acid and magnesium resulted in the formation of a single product peak using HPLC with fluorescence and ultraviolet absorbance detection. This peak was confirmed as serotonin glucuronide based on sensitivity to beta-glucuronidase and by obtaining the expected mass of 352 with positive-ion mass spectrometry. 3. Following a preparative HPLC isolation, the structure of this metabolite was established as serotonin-5-O-glucuronide by (1)H-NMR spectroscopy. 4. Enzyme kinetic studies showed apparent K(m) and V(max) of 8.8 +/- 0.3 mM and 43.4 +/- 0.4 nmoles min(-1) mg(-1) protein, respectively, for human liver microsomes, and 5.9 +/- 0.2 mM and 15.8 +/- 0.2 nmoles min(-1) mg(-1), respectively, for recombinant UGT1A6. 5. The order of serotonin-UGT activities in animal liver microsomes was rat > mouse > human > cow > pig > horse > dog > rabbit > monkey > ferret. Cat livers showed no serotonin-UGT activity. Heterozygous and homozygous mutant Gunn rat livers had 40 and 13%, respectively, of the activity of the normal Wistar rat, indicating a significant contribution by a rat UGT1A isoform to serotonin glucuronidation. 6. This assay provides a novel sensitive and specific technique for the measurement of serotonin-UGT activity in vitro.

PMID:
12623759
DOI:
10.1080/0049825021000048809
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center