Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuropharmacology. 2003 Feb;44(2):264-74.

Regional differences in naloxone modulation of Delta(9)-THC induced Fos expression in rat brain.

Author information

1
School of Psychology, University of New England, Armidale NSW 2351, Australia.

Abstract

Recent behavioral and pharmacological research shows extensive interplay between cannabinoid and opioid neurochemical systems. Here we examined the neuroanatomical basis of this interaction using c-fos immunohistochemistry. We compared Fos immunoreactivity in groups of male albino Wistar rats treated with vehicle, Delta(9)-tetrahydrocannabinol (THC, 10 mg/kg, i.p.), naloxone (10 mg/kg, i.p.) or THC and naloxone in combination. Locomotor activity was depressed in both THC treatment groups and moderately inhibited in rats given naloxone alone. Results showed that naloxone inhibited THC-induced Fos immunoreactivity in several key brain regions including the ventral tegmental area, ventromedial and dorsomedial hypothalamus, central caudate-putamen and ventrolateral periaqueductal grey. Conversely, naloxone and THC had an additive effect on Fos immunoreactivity in the central nucleus of the amygdala, the bed nucleus of the stria terminalis (lateral division), the insular cortex, and the paraventricular nucleus of the thalamus. These findings complement earlier pharmacological results showing potent modulation of cannabinoid-induced analgesia, appetite and reward by opioids. The inhibitory effects of naloxone on THC-induced ventral tegmentum, hypothalamic and periaqueductal grey Fos expression point to these structures as key sites involved in cannabinoid-opioid interactions.

PMID:
12623225
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center