Send to

Choose Destination
See comment in PubMed Commons below
Microb Pathog. 2003 Jan;34(1):11-6.

Differential expression of genes encoding membrane proteins between acute and continuous Chlamydia pneumoniae infections.

Author information

Centre for Molecular Biotechnology/Cooperative Research Centre for Diagnostics, School of Life Sciences, Level 5, Q-Block, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.


Chlamydia pneumoniae is associated with several chronic human diseases, including chronic obstructive pulmonary disease and atherosclerotic cardiovascular disease. During chronic disease, organisms are believed to exist in a persistent phase that is not well understood at the genetic level. Long-term in vitro continuous infections are spontaneously persistent and are less susceptible than in vitro acute infections to treatment with antibiotics, and are therefore particularly relevant as an in vitro model of in vivo chronic disease. Real-time reverse transcriptase-PCR (r-t RT-PCR) was used to quantitate transcript copy numbers of 13 genes in continuous and acute infections with C. pneumoniae. The set of genes studied encodes proteins with known or predicted functions in the cell membrane, the inclusion membrane, cell division, metabolism, and immunopathology. Significant upregulation was seen for five genes (CPn0483, nlpD, ompA, pmp1 and porB) in continuous cultures. The genes omcB, pmp1, and porB, all of which encode membrane proteins, shared similar patterns of expression over both acute and continuous profiles. These results show that Chlamydia in the long-term continuous model of persistence have a unique transcription profile, adding to our knowledge of regulation of this important stage of chlamydial growth.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center