Format

Send to

Choose Destination
Brain Res. 2003 Mar 21;966(2):265-73.

Protection from noise-induced lipid peroxidation and hair cell loss in the cochlea.

Author information

1
Kresge Hearing Research Institute, The University of Michigan, 1301 East Ann Street, Ann Arbor, Michigan, MI 48109-0506, USA.

Abstract

In order to delineate mechanisms of noise-induced hearing loss, we assessed noise trauma and its pharmacological modulation in the guinea pig. Auditory threshold shifts (measured by auditory brainstem responses), hair cell loss and lipid peroxidation (8-isoprostane formation) were determined in the absence or presence of agents known to influence the formation or action of reactive oxygen species (ROS): the non-specific N-methyl-D-aspartate (NMDA) receptor antagonist (+)-MK-801, its inactive isomer (-)-MK-801, the selective NR1/2B NMDA receptor antagonist PD 174494, the nitric oxide synthase (NOS) inhibitor L-N(omega)-Nitroarginine methyl ester (L-NAME) and the anti-oxidant N-acetylcysteine (NAC). (+)-MK-801 and NAC attenuated threshold shifts and hair cell loss effectively while PD 174494 did so partially. L-NAME attenuated threshold shifts at 2 kHz but increased them at 20 kHz, and (-)-MK-801 was ineffective. Noise-induced elevation in 8-isoprostane in the cochlea was significantly attenuated by (+)-MK-801 and PD 174494 in the organ of Corti and modiolar core, by L-NAME in the lateral wall and modiolar core, and by NAC in all three regions. (-)-MK-801 did not influence noise-induced 8-isoprostane formation. There was a significant correlation between threshold shifts at 4 kHz, hair cell loss and the level of 8-isoprostane formed in the organ of Corti, but not in the lateral wall tissues. This finding suggests a causal relationship between ROS formation and functional and morphological damage. NMDA receptors and, to some extent, NOS may be involved in noise-induced ROS formation. The data also indicate that lipid peroxidation in the lateral wall tissues does not influence permanent threshold shifts.

PMID:
12618349
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center