Format

Send to

Choose Destination
Microsurgery. 2003;23(1):60-5.

Primary nerve grafting: A study of revascularization.

Author information

1
Division of Plastic Surgery, University of California at Irvine, Irvine, California, USA.

Abstract

It was the purpose of this study to evaluate the revascularization of primary nerve repair and grafts using orthogonal polarization spectral (OPS) (Cytometrix, Inc.) imaging, a novel method for real-time evaluation of microcirculatory blood flow. Twenty male Sprague Dawley rats (250 g) were anesthetized with vaporized halothane and surgically prepared for common peroneal nerve resection. Group I animals (n = 10) underwent primary neurorraphy following transection, utilizing a microsurgical technique with 10-0 nylon suture. Group II (n = 10) animals had a 7-mm segment of nerve excised, reversed, and subsequently replaced as a nerve graft under similar techniques. All animals were evaluated using the OPS imaging system on three portions (proximal, transection site/graft, and distal) of the nerve following repair or grafting. Reevaluation of 5 animals randomly selected from each group using the OPS imaging system was again performed on days 14 and 28 following microsurgical repair/grafting. Values were determined by percent change in vascularity of the common peroneal nerve at 0 hr following surgery. Real-time evaluation of blood flow was utilized as an additional objective criterion. Percent vascularity in group I and II animals increased from baseline in all segments at day 14. By day 28, vascularity in nerves of group I rats decreased in all segments to values below baseline, with the exception of the transection site, which remained at a higher value than obtained directly after surgical repair. In group II animals, vascularity remained above baseline in all segments except the distal segment, which returned to vascularity levels similar to those at 0 hr. Further, occlusion of the vessels demonstrated in the graft and distal segments following initial transection appeared to be corrected. This study suggests that revascularization may occur via bidirectional inosculation with favored proximal vascular growth advancement. The use of real-time imaging offers a unique evaluation of tissues through emerging technologies.

PMID:
12616521
DOI:
10.1002/micr.10082
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center