Send to

Choose Destination
J Neurotrauma. 2003 Jan;20(1):111-20.

Delayed treatment of hemoglobin neurotoxicity.

Author information

Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.


Hemoglobin is an oxidative neurotoxin that may contribute to cell injury after CNS trauma and hemorrhagic stroke. Prior studies have demonstrated that concomitant treatment with iron-chelating antioxidants prevents its neurotoxicity. However, the efficacy of these agents when applied hours after hemoglobin has not been determined, and is the subject of the present investigation. Consistent with prior observations, an increase in reactive oxygen species generation, detected by 2',7'-dichlorofluorescin oxidation, was observed when mixed neuronal/astrocyte cultures prepared from mouse cortex were exposed to hemoglobin alone. However, this oxidative stress developed slowly. A significant increase in the dichlorofluorescein signal compared with control, untreated cultures was not observed until four hours after addition of hemoglobin, and was followed by loss of membrane integrity and propidium iodide staining. Treating cultures with the 21-aminosteroid U74500A or the ferric iron chelator deferoxamine four hours after initiating hemoglobin treatment markedly attenuated reactive oxygen species production within 2 h. Continuous exposure to 5 micro M hemoglobin for 24 h resulted in death of about three-quarters of neurons, without injuring astrocytes. Most neuronal loss was prevented by concomitant treatment with U74500A; its effect was not significantly attenuated if treatment was delayed for 2-4 h, and it still prevented over half of neuronal death if treatment was delayed for 8 h. Similar neuroprotection was produced by delayed treatment with deferoxamine or the lipid-soluble iron chelator phenanthroline. None of these agents had any effect on neuronal death when added to cultures 12 h after hemoglobin. These results suggest that hemoglobin is a potent but slowly-acting neurotoxin. The delayed onset of hemoglobin neurotoxicity may make it an attractive target for therapeutic intervention.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center