Format

Send to

Choose Destination
J Microbiol Methods. 2003 Apr;53(1):67-76.

Direct quantification of fungal DNA from soil substrate using real-time PCR.

Author information

1
Department of Plant Science, McGill University, Macdonald Campus, 21 111 Lakeshore, Raymond Building, Ste-Anne-de-Bellevue, QC, Canada H9X 3V9.

Abstract

Detection and quantification of genomic DNA from two ecologically different fungi, the plant pathogen Fusarium solani f. sp. phaseoli and the arbuscular mycorrhizal fungus Glomus intraradices, was achieved from soil substrate. Specific primers targeting a 362-bp fragment from the SSU rRNA gene region of G. intraradices and a 562-bp fragment from the F. solani f. sp. phaseoli translation elongation factor 1 alpha gene were used in real-time polymerase chain reaction (PCR) assays conjugated with the fluorescent SYBR(R) Green I dye. Standard curves showed a linear relation (r(2)=0.999) between log values of fungal genomic DNA of each species and real-time PCR threshold cycles and were quantitative over 4-5 orders of magnitude. Real-time PCR assays were applied to in vitro-produced fungal structures and sterile and non-sterile soil substrate seeded with known propagule numbers of either fungi. Detection and genomic DNA quantification was obtained from the different treatments, while no amplicon was detected from non-seeded non-sterile soil samples, confirming the absence of cross-reactivity with the soil microflora DNA. A significant correlation (P<0.0001) was obtained between the amount of genomic DNA of F. solani f. sp. phaseoli or G. intraradices detected and the number of fungal propagules present in seeded soil substrate. The DNA extraction protocol and real-time PCR quantification assay can be performed in less than 2 h and is adaptable to detect and quantify genomic DNA from other soilborne fungi.

PMID:
12609725
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center