Format

Send to

Choose Destination
Biol Reprod. 2003 Apr;68(4):1119-33. Epub 2002 Nov 13.

Neuronal inputs from the hypothalamus and brain stem to the medial preoptic area of the ram: neurochemical correlates and comparison to the ewe.

Author information

1
Department of Physiology, Monash University, Victoria 3800, Australia. chscott@csu.edu.au

Abstract

The retrograde tracer, FluoroGold, was used to trace the neuronal inputs from the septum, hypothalamus, and brain stem to the region of the GnRH neurons in the rostral preoptic area of the ram and to compare these imputs with those in the ewe. Sex differences were found in the number of retrogradely labeled cells in the dorsomedial and ventromedial nuclei. Retrogradely labeled cells were also observed in the lateral septum, preoptic area, organum vasculosum of the lamina terminalis, bed nucleus of the stria terminalis, stria terminalis, subfornical organ, periventricular nucleus, anterior hypothalamic area, lateral hypothalamus, arcuate nucleus, and posterior hypothalamus. These sex differences may partially explain sex differences in how GnRH secretion is regulated. Fluorescence immunohistochemistry was used to determine the neurochemical identity of some of these cells in the ram. Very few tyrosine hydroxylase-containing neurons in the A14 group (<1%), ACTH-containing neurons (<1%), and neuropeptide Y-containing neurons (1-5%) in the arcuate nucleus contained FluoroGold. The ventrolateral medulla and parabrachial nucleus contained the main populations of FluoroGold-containing neurons in the brain stem. Retrogradely labeled neurons were also observed in the nucleus of the solitary tract, dorsal raphe nucleus, and periaqueductal gray matter. Virtually all FluoroGold-containing cells in the ventrolateral medulla and about half of these cells in the nucleus of the solitary tract also stained for dopamine beta-hydroxylase. No other retrogradely labeled cells in the brain stem were noradrenergic. Although dopamine, beta-endorphin, and neuropeptide Y have been implicated in the regulation of GnRH secretion in males, it is unlikely that these neurotransmitters regulate GnRH secretion via direct inputs to GnRH neurons.

PMID:
12606458
DOI:
10.1095/biolreprod.102.010595
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center