Send to

Choose Destination
Am J Respir Cell Mol Biol. 2003 Jun;28(6):762-9. Epub 2003 Jan 31.

Ras and mitogen-activated protein kinase kinase kinase-1 coregulate activator protein-1- and nuclear factor-kappaB-mediated gene expression in airway epithelial cells.

Author information

Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109-0212, USA.


In 16HBE14o- human bronchial epithelial cells, maximal tumor necrosis factor (TNF)-alpha-induced interleukin (IL)-8 expression depends on the activation of two distinct signaling pathways, one constituted in part by activator protein (AP)-1 and the other by nuclear factor (NF)-kappaB. We examined the upstream signaling intermediates responsible for IL-8 and granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in this system, hypothesizing that p21 Ras and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase (MEKK)-1 function as common upstream activators of both the AP-1 and NF-kappaB pathways. TNF-alpha treatment induced both Ras and MEKK1 activation. Dominant-negative forms of Ras (N17Ras) and MEKK1 (MEKK1-KM) each inhibited TNF-alpha-induced transcription from IL-8 and GM-CSF promoters. Ras was required for maximal activation of extracellular signal-regulated kinase (ERK) and Jun amino terminal kinase (JNK) as well as AP-1 and NF-kappaB transcriptional activities, but not for activation of IkappaB kinase (IKK)-beta, an upstream activator of NF-kappaB. MEKK1 was required for maximal activation of ERK, JNK, and IKK, as well as for maximal AP-1 and NF-kappaB transcriptional activities. We conclude that Ras regulates TNF-alpha-induced chemokine expression by activating the AP-1 pathway and enhancing transcriptional function of NF-kappaB, whereas MEKK1 activates both the AP-1 and NF-kappaB pathways.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center