Format

Send to

Choose Destination
Cell Calcium. 2003 Mar;33(3):185-95.

Regulation of outer hair cell cytoskeletal stiffness by intracellular Ca2+: underlying mechanism and implications for cochlear mechanics.

Author information

1
Section on Structural Cell Biology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bldg. 50, Room 4346, Bethesda, MD 20892-8027, USA. gregory.frolenkov@nih.gov

Abstract

Two Ca(2+)-dependent mechanisms have been proposed to regulate the mechanical properties of outer hair cells (OHCs), the sensory-motor receptors of the mammalian cochlea. One involves the efferent neurotransmitter, acetylcholine, decreasing OHC axial stiffness. The other depends on elevation of intracellular free Ca(2+) concentration ([Ca(2+)](i)) resulting in OHC elongation, a process known as Ca(2+)-dependent slow motility. Here we provide evidence that both these phenomena share a common mechanism. In whole-cell patch-clamp conditions, a fast increase of [Ca(2+)](i) by UV-photolysis of caged Ca(2+) or by extracellular application of Ca(2+)-ionophore, ionomycin, produced relatively slow (time constant approximately 20s) cell elongation. When OHCs were partially collapsed by applying minimal negative pressure through the patch pipette, elevation of the [Ca(2+)](i) up to millimole levels (estimated by Fura-2) was unable to restore the cylindrical shape of the OHC. Stiffness measurements with vibrating elastic probes showed that the increase of [Ca(2+)](i) causes a decrease of OHC axial stiffness, with time course similar to that of the Ca(2+)-dependent elongation, without developing any measurable force. We concluded that, contrary to a previous proposal, Ca(2+)-induced OHC elongation is unlikely to be driven by circumferential contraction of the lateral wall, but is more likely a passive mechanical reaction of the turgid OHC to Ca(2+)-induced decrease of axial stiffness. This may be the key phenomenon for controlling gain and operating point of the cochlear amplifier.

PMID:
12600805
DOI:
10.1016/s0143-4160(02)00228-2
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center