Send to

Choose Destination
Am J Pathol. 2003 Mar;162(3):943-51.

Short-term exposure of cartilage to blood results in chondrocyte apoptosis.

Author information

Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.


Studies have shown that joint bleeding leads to cartilage degradation independent of concurrent synovitis. We hypothesized that the blood-induced cartilage damage is because of increased chondrocyte apoptosis after short-term exposure of whole blood or isolated mononuclear cells plus red blood cells to cartilage. Human cartilage tissue samples were co-cultured for 4 days with whole blood (50% v/v) or with mononuclear cells plus red blood cells (50% v/v equivalents). Cartilage matrix proteoglycan synthesis ((35)SO(4)(2-) incorporation) was determined after 4 days as well as at day 16 (after a 12-day recovery period in the absence of any additions). To test the involvement of apoptosis a specific caspase-3 inhibitor (acDEVDcho, 0 to 500 micro mol/L) as well as a pan-caspase inhibitor (zVADfmk, 0 to 500 micro mol/L) were added. Chondrocyte apoptosis was evaluated by immunohistochemical staining of single-strand DNA and by terminal dUTP nick-end labeling. Cartilage co-cultured with whole blood as well as mononuclear cells plus red blood cells induced a long-term inhibition of proteoglycan synthesis (74% and 78% inhibition on day 16, respectively). Immunohistochemistry showed a threefold increase in apoptotic chondrocytes in cultures with 50% whole blood as well as with mononuclear cells plus red blood cells. Both the specific caspase-3 inhibitor and the pan-caspase inhibitor partially restored proteoglycan synthesis in the cartilage after blood exposure. This effect was accompanied by a decrease in the number of apoptotic chondrocytes. These data suggest that a single joint hemorrhage (a 4-day exposure of cartilage to 50% v/v blood) results in induction of chondrocyte apoptosis, responsible for the observed inability of the chondrocytes to restore the proteoglycan synthesis during recovery from a short-term exposure to blood. This reduced restoration could eventually lead to cartilage degeneration and ultimately joint destruction.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center