Send to

Choose Destination
See comment in PubMed Commons below
Adv Exp Med Biol. 2002;514:361-88.

Mouse models to study GCAP functions in intact photoreceptors.

Author information

  • 1The Mary D. Allen Laboratory for Vision Research, Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9112, USA.


In photoreceptor cells cGMP is the second messenger that transduces light into an electrical response. Regulation of cGMP synthesis by Ca2+ is one of the key mechanisms by which Ca2+ exerts negative feedback to the phototransduction cascade in the process of light adaptation. This Ca2+ feedback to retinal guanylyl cyclases (Ret-GCs) is conferred by the guanylate cyclase-activating proteins (GCAPs). Mutations in GCAP1 that disrupt the Ca2+ regulation of Ret-GCs in vitro have been associated with severe human vision disorders. This chapter focuses on recent data obtained from biochemical and electrophysiological studies of GCAP1/GCAP2 knockout mice and other GCAP transgenic mice, addressing: 1. the quantitative aspects of the Ca2+-feedback to Ret-GCs in regulating the light sensitivity and adaptation in intact rods; 2. functional differences between GCAP1 and GCAP2 in intact rod photoreceptors; and 3. whether GCAP mutants with impaired Ca2+ binding lead to retinal disease in vivo by constitutive activation of Ret-GCs and elevation of intracellular cGMP, as predicted from in vitro studies.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center