Format

Send to

Choose Destination
Neuroradiology. 2003 Feb;45(2):65-70. Epub 2003 Jan 16.

The reversibility of reduced cortical vein compliance in normal-pressure hydrocephalus following shunt insertion.

Author information

1
Department of Medical Imaging, John Hunter Hospital, Locked Bag 1, Newcastle Region Mail Centre, 2310 Australia. grant.bateman@hunter.health.nsw.gov.au

Abstract

Superficial cortical venous compression secondary to alterations in craniospinal compliance is implicated in the pathogenesis of normal pressure hydrocephalus (NPH). A reduction in the pulsation in the outflow of the cortical veins would be expected to occur following compression of these veins and this has been shown in NPH. If cortical vein compression is a causative factor in NPH, it would be expected that cortical vein compliance as measured by pulsatility would be significantly altered by a curative procedure i.e. shunt tube insertion. My purpose is to compare the blood flow pulsatility characteristics in a group of patients with NPH before and after shunt tube insertion. I initially studied 18 subjects without pathology with MRI flow quantification studies of the cerebral arteries and veins to define the range of normality. The main study involved 18 patients with idiopathic dementia and mild leukoaraiosis who served as controls and seven patients with NPH studied before and after shunt insertion. Arterial, superior sagittal and straight sinus pulsatility was not significantly different between the patients with idiopathic dementia and those NPH patients before or after shunting. Cortical vein pulsatility before shunting in the patients with NPH was 43% lower than in those with idiopathic dementia ( P=0.006). Following shunting, cortical vein pulsatility increased by 186% ( P=0.007). There is thus reduced compliance in cortical veins in NPH which is significantly increased in patients who respond to insertion of a shunt tube. These findings suggest that reversible elevation in cortical vein pressure and reversal of the normal absorption pathway for cerebrospinal fluid may be behind the pathophysiology of NPH.

PMID:
12592485
DOI:
10.1007/s00234-002-0901-0
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center