Send to

Choose Destination
Eur J Pharmacol. 2003 Feb 21;462(1-3):1-8.

N-terminal truncation of human alpha1D-adrenoceptors increases expression of binding sites but not protein.

Author information

Department of Pharmacology, 5017 Rollins Research Center, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.


The role of the N-terminus of human alpha(1D)-adrenoceptors was examined by deleting the first 79 amino acids (Delta(1-79)) and epitope-tagging to facilitate immunoprecipitation and detection. Following transfection into HEK293 cells, 6- to 13-fold increases in the density of specific [125I]BE 2254 binding sites were observed for both tagged and untagged Delta(1-79)alpha(1D)- compared to full-length alpha(1D)-adrenoceptors, while agonist and antagonist affinities remained unchanged. In contrast, immunoprecipitation of tagged receptors showed that full-length alpha(1D)-adrenoceptor protein was at least twice as abundant as Delta(1-79)alpha(1D)-adrenoceptor protein. Photoaffinity labelling with [125I]arylazidoprazosin showed much more intense labelling of tagged Delta(1-79)alpha(1D)- than of full-length alpha(1D)-adrenoceptors. Substantial N-linked glycosylation of tagged Delta(1-79)alpha(1D)-adrenoceptors was observed, although full-length alpha(1D)-adrenoceptors contain two consensus glycosylation sites but are not glycosylated. These results suggest that N-terminal truncation of alpha(1D)-adrenoceptors enhances processing of a binding competent form in HEK293 cells; and show a clear dissociation between abundance of receptor protein and density of receptor binding sites.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center