Send to

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2003 Feb 26;125(8):2195-9.

Zeolite-confined Nano-RuO(2): A green, selective, and efficient catalyst for aerobic alcohol oxidation.

Author information

Department of Chemistry, Institute for Research in Materials, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada.


The development of green, selective, and efficient catalysts, which can aerobically oxidize a variety of alcohols to their corresponding aldehydes and ketones, is of both economic and environmental significance. We report here the synthesis of a novel aerobic oxidation catalyst, a zeolite-confined nanometer-sized RuO(2) (RuO(2)-FAU), by a one-step hydrothermal method. Using the spatial constraints of the rigid zeolitic framework, we sucessfully incorporated RuO(2) nanoparticles (1.3 +/- 0.2 nm) into the supercages of faujasite zeolite. Ru K-edge X-ray absorption fine structure results indicate that the RuO(2) nanoclusters anchored in the zeolite are structurally similar to highly hydrous RuO(2); that is, there is a two-dimensional structure of independent chains, in which RuO(6) octahedra are connected together by two shared oxygen atoms. In our preliminary catalytic studies, we find that the RuO(2) nanoclusters exhibit extraordinarily high activity and selectivity in the aerobic oxidation of alcohols under mild conditions, for example, air and ambient pressure. The physically trapped RuO(2) nanoclusters cannot diffuse out of the relatively narrow channels/pores of the zeolite during the catalytic process, making the catalyst both stable and reusable.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center