Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 2003 Mar;23(5):1703-16.

Biphasic activation of Aurora-A kinase during the meiosis I- meiosis II transition in Xenopus oocytes.

Author information

  • 1Ottawa Health Research Institute, Ottawa Hospital Civic Campus, University of Ottawa, Ottawa, Ontario, Canada.


Xenopus Aurora-A (also known as Eg2) is a member of the Aurora family of mitotic serine/threonine kinases. In Xenopus oocytes, Aurora-A phosphorylates and activates a cytoplasmic mRNA polyadenylation factor (CPEB) and therefore plays a pivotal role in MOS translation. However, hyperphosphorylation and activation of Aurora-A appear to be dependent on maturation-promoting factor (MPF) activation. To resolve this apparent paradox, we generated a constitutively activated Aurora-A by engineering a myristylation signal at its N terminus. Injection of Myr-Aurora-A mRNA induced germinal vesicle breakdown (GVBD) with the concomitant activation of MOS, mitogen-activated protein kinase, and MPF. Myr-Aurora-A-injected oocytes, however, appeared to arrest in meiosis I with high MPF activity and highly condensed, metaphase-like chromosomes but no organized microtubule spindles. No degradation of CPEB or cyclin B2 was observed following GVBD in Myr-Aurora-A-injected oocytes. In the presence of progesterone, the endogenous Aurora-A became hyperphosphorylated and activated at the time of MPF activation. Following GVBD, Aurora-A was gradually dephosphorylated and inactivated before it was hyperphosphorylated and activated again. This biphasic pattern of Aurora-A activation mirrored that of MPF activation and hence may explain meiosis I arrest by the constitutively activated Myr-Aurora-A.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center