Format

Send to

Choose Destination
See comment in PubMed Commons below
FEBS Lett. 2003 Feb 11;536(1-3):77-84.

Unexpected catalytic site variation in phosphoprotein phosphatase homologues of cofactor-dependent phosphoglycerate mutase.

Author information

1
Embrapa Genetic Resources and Biotechnology, Cenargen/Embrapa, Parque Estação Biológica, Final W3 Norte, 70770-900 Brasília, Brazil. daniel@cenargen.embrapa.br

Abstract

The cofactor-dependent phosphoglycerate mutase (dPGM) superfamily contains, besides mutases, a variety of phosphatases, both broadly and narrowly substrate-specific. Distant dPGM homologues, conspicuously abundant in microbial genomes, represent a challenge for functional annotation based on sequence comparison alone. Here we carry out sequence analysis and molecular modelling of two families of bacterial dPGM homologues, one the SixA phosphoprotein phosphatases, the other containing various proteins of no known molecular function. The models show how SixA proteins have adapted to phosphoprotein substrate and suggest that the second family may also encode phosphoprotein phosphatases. Unexpected variation in catalytic and substrate-binding residues is observed in the models.

PMID:
12586342
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center