Format

Send to

Choose Destination
See comment in PubMed Commons below
IEEE Trans Med Imaging. 2002 Nov;21(11):1421-39.

HAMMER: hierarchical attribute matching mechanism for elastic registration.

Author information

1
Center for Biomedical Image Computing, Department of Radiology, The Johns Hopkins University School of Medicine, 601 N. Caroline Street, Baltimore, MD 21287, USA. dgshen@rad.upenn.edu

Abstract

A new approach is presented for elastic registration of medical images, and is applied to magnetic resonance images of the brain. Experimental results demonstrate very high accuracy in superposition of images from different subjects. There are two major novelties in the proposed algorithm. First, it uses an attribute vector, i.e., a set of geometric moment invariants (GMIs) that are defined on each voxel in an image and are calculated from the tissue maps, to reflect the underlying anatomy at different scales. The attribute vector, if rich enough, can distinguish between different parts of an image, which helps establish anatomical correspondences in the deformation procedure; it also helps reduce local minima, by reducing ambiguity in potential matches. This is a fundamental deviation of our method, referred to as the hierarchical attribute matching mechanism for elastic registration (HAMMER), from other volumetric deformation methods, which are typically based on maximizing image similarity. Second, in order to avoid being trapped by local minima, i.e., suboptimal poor matches, HAMMER uses a successive approximation of the energy function being optimized by lower dimensional smooth energy functions, which are constructed to have significantly fewer local minima. This is achieved by hierarchically selecting the driving features that have distinct attribute vectors, thus, drastically reducing ambiguity in finding correspondence. A number of experiments demonstrate that the proposed algorithm results in accurate superposition of image data from individuals with significant anatomical differences.

PMID:
12575879
DOI:
10.1109/TMI.2002.803111
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IEEE Engineering in Medicine and Biology Society
    Loading ...
    Support Center