Format

Send to

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 1975 Sep;123(3):905-15.

Transformation reveals a chromosomal locus of the gene(s) for methicillin resistance in Staphylococcus aureus.

Abstract

The localization of the gene(s) mediating methicillin (mecr) in Staphylococcus aureus was determined by transformation with deoxyribonucleic acid (DNA) from a natural mecr strain (DU 4916) and transformation obtained with DNA from this strain. Streptomycin resistance genes (strr) and novobiocin resistance genes (novr) were used concurrently as representatives for chromosomal genes; penicillinase (PI254) and tetracycline plasmids were used as examples of medium- and small-size extrachromosomal genes, respectively. Superinfection of the lysogenic recipients with the competence-inducing phage phi11 or 83A enhanced transformation for all markers. Phenotypic expression of cadmium (cadr), tetracycline (tetr), or methicillin resistance (mecr) did not appear to require a host recombination system since a recA1 mutant could serve as the recipient provided it was superinfected with a competence-inducing phage. There was, furthermore, no requirement for preexisting plasmids for phenotypic expression. Ultraviolet irradiation of transforming DNA enhanced at low doses the transformation frequency for chromosomal genes strr and novr but not for mecr, cadr, or tetr. The gene(s) for mecr was transformed with chromosomal DNA after sodium dodecyl sulfate-sodium chloride extraction and after neutral sucrose gradient centrifugation of bulk DNA from wild-type strain DU 4916 and the transformats. No cavalently closed circular DNA or open circular DNA carrying the methicillin resistance gene(s) could be detected in the wild type or the transformants either by ethidium bromide-cesium chloride gradient centrifugation or by zonal rate centrifugation of cells directly lysed on top of the gradients. The mecr gene(s) is thus probably of chromosomal nature but possibly under recombinational control of phage genes, since transfer of mecr is independent of the recA1 gene(s) but can be accomplished in this strain after superinfection with a competence-inducing phage. Ultraviolet light inactivation of transforming DNA shows first-order kinetics for mecr transformability similar to that observed for both transfecting and plasmid DNA.

PMID:
125746
PMCID:
PMC235813
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center