Format

Send to

Choose Destination
Curr Biol. 2003 Feb 4;13(3):236-40.

Posttranscriptional gene silencing is not compromised in the Arabidopsis CARPEL FACTORY (DICER-LIKE1) mutant, a homolog of Dicer-1 from Drosophila.

Author information

1
Commonwealth Scientific and Industrial Research Organisation, Plant Industry, P.O. Box 1600, Canberra ACT 2601, Australia. jean.finnegan@csiro.au

Abstract

Posttranscriptional silencing (PTGS) in plants, nematodes, Drosophila, and perhaps all eukaryotes operates by sequence-specific degradation or translational inhibition of the target mRNA. These processes are mediated by duplexed RNA. In Drosophila and nematodes, double-stranded (ds)RNA or self-complementary RNA is processed into fragments of approximately 21 nt by Dicer-1. These small interfering RNAs (siRNAs) serve as guides to target degradation of homologous single-stranded (ss)RNA. In some cases, the approximately 21 nt guide fragments derived from endogenous, imperfectly self-complementary RNAs cause translational inhibition of their target mRNAs, with which they have substantial, but not perfect sequence complementarity. These small temporal RNAs (stRNAs) belong to a class of noncoding microRNAs (miRNAs), 20-24 nt in length, that are found in flies, plants, nematodes, and mammals. In nematodes, the Dicer-1 enzyme catalyzes the production of both siRNA and stRNA. Mutation of the Arabidopsis Dicer-1 homolog, CARPEL FACTORY (CAF), blocks miRNA production. Here, we report that the same caf mutant does not block either PTGS or siRNA production induced by self-complementary hairpin RNA. This suggests either that this mutation only impairs miRNA formation or, more interestingly, that plants have two distinct dicer-like enzymes, one for miRNA and another for siRNAi production.

PMID:
12573220
DOI:
10.1016/s0960-9822(03)00010-1
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center