Send to

Choose Destination
Int J Cancer. 2003 Mar 20;104(2):233-7.

Rapamycin inhibits proliferation of human neuroblastoma cells without suppression of MycN.

Author information

Department of Pediatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan.


MYCN and insulin-like growth factor (IGF) system are important for the pathogenesis and development of neuroblastoma. We previously reported evidence of a direct linkage between MycN and the IGF system in KP-N-RT human neuroblastoma cells, where IGF-I induced both MycN expression at the RNA level and G1-S cell cycle progression through the IGF-I receptor (IGF-IR)/ MEK/ mitogen-activated protein kinase (MAPK) pathway (A. Misawa et al., Cancer Res, 2000; 60:64-9). Our data also showed the possibility of a potent IGF-IR downstream signal cascade that accelerates progression into the S-phase, other than the MAPK pathway. In this study, we further investigated the role of this alternative pathway in the growth of neuroblastoma cells. A phosphoinositide 3-kinase (PI3K) inhibitor wortmannin blocked IGF-I-mediated induction of MycN. Our data suggest that the inhibition of MycN by wortmannin was transmitted through the MAPK pathway. Progression of the cell cycle from G1 to S phase was inhibited up to 90% by wortmannin or rapamycin, an inhibitor of mTOR, which acts downstream of PI3K. Despite its effects on induction of MycN and on progression through S phase, wortmannin did not block proliferation of neuroblastoma cells. On the other hand, rapamycin inhibited both IGF-I-induced cell cycle progression and cell proliferation in complete medium, although it had no effect on IGF-I-mediated MycN induction. Our study indicates maintenance of cell proliferation requires mTOR function, which is independent of MycN induction in human neuroblastoma cells.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center