Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem Biophys Res Commun. 2003 Feb 7;301(2):287-92.

Self-interaction of heterochromatin protein 1 is required for direct binding to histone methyltransferase, SUV39H1.

Author information

1
Division of Molecular Population Genetics, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka-ken 812-8582, Japan. kyama@bioreg.kyushu-u.ac.jp

Abstract

Heterochromatin protein 1 (HP1) binds to the nucleosome via a methylated lysine residue 9 of histone H3 which is catalyzed by a histone methyltransferase such as SUV39H1. Although co-localization of HP1 and SUV39H1 has been evident in immunostaining and immunoprecipitation experiments, direct protein-protein interactions have remained to be characterized. We examined interactions between mouse HP1 alpha (mHP1 alpha) and SUV39H1 in yeast and in vitro. A yeast two-hybrid and a glutathione S-transferase pull-down study indicated that the chromo shadow domain of mHP1 alpha directly interacts with the N-terminal 39 amino acid stretch of SUV39H1. The IY165/168EE mutation in the chromo shadow domain of mHP1 alpha abrogated a self-interaction and this mutant did not interact with SUV39H1. The 13-mer peptide containing a consensus sequence for binding to the dimer surface formed by the chromo shadow domains inhibited interaction between mHP1 alpha and SUV39H1. It seems that self-interaction through the chromo shadow domain of HP1 is crucial for recruitment of SUV39H1 onto nucleosomes.

PMID:
12565857
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center