Send to

Choose Destination
Biochem Biophys Res Commun. 2003 Feb 14;301(3):657-64.

Expression of polycystin-1 C-terminal fragment enhances the ATP-induced Ca2+ release in human kidney cells.

Author information

Department of Biochemistry and Molecular Biology, Section of General Pathology, University of Ferrara, Italy.


Polycystin-1 (PC1) is a membrane protein expressed in tubular epithelia of developing kidneys and in other ductal structures. Recent studies indicate this protein to be putatively important in regulating intracellular Ca(2+) levels in various cell types, but little evidence exists for kidney epithelial cells. Here we examined the role of the PC1 cytoplasmic tail on the activity of store operated Ca(2+) channels in human kidney epithelial HEK-293 cell line. Cells were transiently transfected with chimeric proteins containing 1-226 or 26-226 aa of the PC1 cytoplasmic tail fused to the transmembrane domain of the human Trk-A receptor: TrkPC1 wild-type and control Trk truncated peptides were expressed at comparable levels and localized at the plasma membrane. Ca(2+) measurements were performed in cells co-transfected with PC1 chimeras and the cytoplasmic Ca(2+)-sensitive photoprotein aequorin, upon activation of the phosphoinositide pathway by ATP, that, via purinoceptors, is coupled to the release of Ca(2+) from intracellular stores. The expression of TrkPC1 peptide, but not of its truncated form, enhanced the ATP-evoked cytosolic Ca(2+) concentrations. When Ca(2+) assays were performed in HeLa cells characterized by Ca(2+) stores greater than those of HEK-293 cells, the histamine-evoked cytosolic Ca(2+) increase was enhanced by TrkPC1 expression, even in absence of external Ca(2+). These observations indicate that the C-terminal tail of PC1 in kidney and other epithelial cells upregulates a Ca(2+) channel activity also involved in the release of intracellular stores.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center