Send to

Choose Destination
J Physiol. 2003 Feb 15;547(Pt 1):181-96. Epub 2003 Jan 10.

Multiple conductance states of single Ca2+-activated Cl- channels in rabbit pulmonary artery smooth muscle cells.

Author information

Department of Pharmacology and Clinical Pharmacology, Cardiovascular Research Group, St George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK.


Ca2+-activated Cl- channels contribute to agonist-evoked contraction and spontaneous activity in some smooth muscle preparations. Patch pipette techniques were used to study the properties of single Ca2+-activated Cl- channels in freshly dispersed rabbit pulmonary artery myocytes. In the cell-attached recording mode, two conductance states of 3.5 and 1.8 pS were recorded either spontaneously or in response to increasing [Ca2+]i. With inside-out patches, the 3.5 pS channel current predominated at 50 nM [Ca2+]i, but at 500 nM [Ca2+]i most channels opened to the 1.8 pS level and an additional 1.2 pS channel conductance was resolved. At 1 microM [Ca2+]i all of the Cl- channels opened either to the 1.8 pS or 1.2 pS level. In 0 [Ca2+]i, no channel activity was observed at -100 mV to +100 mV, but with 10-250 nM [Ca2+]i the total single channel open probability (NP(o)) increased with depolarisation. This voltage dependence was not seen at higher values of [Ca2+]i. The plot of NPo vs. [Ca2+]i yielded Ca2+ affinity constants of 8 and 250 nM and Hill slopes of 1.3 and 2.3 at +100 and -100 mV, respectively. The distribution of open times was fitted by two exponentials of about 5 and 30 ms, which were neither voltage nor Ca2+ dependent. Replacement of external Cl- by I- shifted the reversal potential by about -30 mV and lengthened the longer of the two mean open times without significant effects on other kinetic parameters. Based on these data, a model for the activation of Ca2+-activated Cl- channels is proposed.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center