Send to

Choose Destination
J Acoust Soc Am. 2003 Jan;113(1):652-9.

Microparticle column geometry in acoustic stationary fields.

Author information

Department of Biomedical Engineering, University of California, One Shields Avenue, Davis, California 95616-5294, USA.


Particles suspended in a fluid will experience forces from stationary acoustic fields. The magnitude of the force depends on the time-averaged energy density of the field and the material properties of the particles and fluid. Forces acting on known particles smaller than 20 microm were studied. Within a 500 kHz acoustic beam generated by a plane-piston circular source, observations were made of the geometry of the particle column that is formed. Varying the acoustic energy altered the column width in a manner predicted by equations for the primary acoustic radiation force from scattering of particles in the long-wavelength limit. The minimum pressures required to trap gas, solid, and liquid particles in a water medium at room temperature were also estimated to within 12%. These results highlight the ability of stationary acoustic fields from a plane-piston radiator to impose nano-Newton-scale forces onto fluid particles with properties similar to biological cells, and suggest that it is possible to accurately quantify these forces.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center