Send to

Choose Destination
Anal Chem. 2003 Jan 15;75(2):296-305.

Modified carbon surfaces as "organic electrodes" that exhibit conductance switching.

Author information

Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210-1185, USA.


Glassy carbon (GC) surfaces modified with monolayers of biphenyl and nitrobiphenyl molecules were examined as voltammetric electrodes for ferrocene, benzoquinone, and tetracyanoquinodimethane electrochemistry in acetonitrile. The modified electrodes exhibited slower electron transfer than unmodified GC, by factors that varied with the monolayer and redox system. However, after a negative potential excursion to approximately -2.0 V versus Ag+/Ag, the modified electrodes exhibited much faster electron-transfer kinetics, approaching those observed on unmodified GC. The effect is attributed to an apparently irreversible structural change in the biphenyl or nitrobiphenyl monolayer, which increases the rate of electron tunneling. The transition to the "ON" state is associated with electron injection into the monolayer similar to that observed in previous spectroscopic investigations and causes a significant decrease in the calculated HOMO-LUMO gap for the monolayer molecule. Once the monolayer is switched ON, it supports rapid electron exchange with outer-sphere redox systems, but not with dopamine, which requires adsorption to the GC surface. The increase in electron-transfer rate with electron injection is consistent with an increase in electron tunneling rate through the monolayer, caused by a significant decrease in tunneling barrier height. The ON electrode can reduce biphenyl- or nitrobiphenyldiazonium reagent in solution to permit formation of a second modification layer of biphenyl or nitrobiphenyl molecules. This "double derivatization" procedure was used to prepare tetraphenyl- and nitrotetraphenyl-modified electrodes, which exhibit significantly slower electron transfer than their biphenyl and nitrobiphenyl counterparts. A "switching" electrode may have useful properties for electroanalytical applications and possibly in electrocatalysis. In addition, the ON state represents an "organic electrode" in which electron transfer occurs at an interface between an organic conductor and a solution rather than an interface between a solution and a metal or carbon electrode.


Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center