Format

Send to

Choose Destination
See comment in PubMed Commons below
Nat Genet. 2003 Feb;33(2):168-71. Epub 2003 Jan 27.

A thermosensory pathway controlling flowering time in Arabidopsis thaliana.

Author information

1
Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.

Abstract

Onset of flowering is controlled by environmental signals such as light and temperature. Molecular-genetic studies in Arabidopsis thaliana have focused on daily light duration, or photoperiod, and transient exposure to winter-like temperatures, or vernalization. Yet ambient growth temperature, which is strongly affected by current changes in global climate, has been largely ignored. Here, we show that genes of the autonomous pathway, previously thought only to act independently of the environment as regulators of the floral repressor FLC (ref. 1), are centrally involved in mediating the effects of ambient temperature. In contrast to wild-type plants and those mutant in other pathways, autonomous-pathway mutants flower at the same time regardless of ambient temperature. In contrast, the exaggerated temperature response of cryptochrome-2 mutants is caused by temperature-dependent redundancy with the phytochrome A photoreceptor. As with vernalization and photoperiod, ambient temperature ultimately affects expression of the floral pathway integrator FT.

PMID:
12548286
DOI:
10.1038/ng1085
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center