Format

Send to

Choose Destination
In Silico Biol. 2002;2(3):393-406.

Modeling of self-organized avascular tumor growth with a hybrid cellular automaton.

Author information

1
Institute of Environmental Systems Research, University of Osnabrück, D-49069 Osnabrück, Germany.

Abstract

Pattern formation in multicellular spheroids is addressed with a hybrid lattice-gas cellular automaton model. Multicellular spheroids serve as experimental model system for the study of avascular tumor growth. Typically, multicellular spheroids consist of a necrotic core surrounded by rings of quiescent and proliferating tumor cells, respectively. Furthermore, after an initial exponential growth phase further spheroid growth is significantly slowed down even if further nutrient is supplied. The cellular automaton model explicitly takes into account mitosis, apoptosis and necrosis as well as nutrient consumption and a diffusible signal that is emitted by cells becoming necrotic. All cells follow identical interaction rules. The necrotic signal induces a chemotactic migration of tumor cells towards maximal signal concentrations. Starting from a small number of tumor cells automaton simulations exhibit the self-organized formation of a layered structure consisting of a necrotic core, a ring of quiescent tumor cells and a thin outer ring of proliferating tumor cells.

PMID:
12542422
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for IOS Press
Loading ...
Support Center