Format

Send to

Choose Destination
Endocrinology. 2003 Feb;144(2):500-8.

Glucose intolerance and resistin expression in rat offspring exposed to ethanol in utero: modulation by postnatal high-fat diet.

Author information

1
Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3A1R9.

Abstract

High-fat diet and intrauterine growth retardation may predispose to obesity, insulin resistance, and type 2 diabetes. Because prenatal ethanol (ETOH) exposure causes intrauterine growth retardation, we investigated its interactions with postnatal high-fat diet on glucose tolerance and adipocyte-derived hormones in the rat offspring. High-fat-fed offspring had increased adiposity, serum leptin, and muscle uncoupling protein-3, but decreased adiponectin mRNA, compared with corresponding chow-fed groups. ETOH-exposed offspring had normal adiponectin, but increased resistin mRNA and protein, compared with controls, regardless of postnatal diet. Skeletal muscle glucose transporter-4 content was decreased after both ETOH exposure and high-fat feeding. Glycemic and insulin responses to an ip glucose challenge were equally increased in non-ETOH-exposed high-fat-fed offspring and in ETOH-exposed chow-fed offspring, with additive effects of ETOH and high-fat diet. Pancreatic insulin content was elevated only in non-ETOH-exposed high-fat-fed offspring. The data suggest that high-fat diet worsens glucose intolerance in offspring of rats exposed to ETOH. Prenatal ETOH exposure and postnatal high-fat diet might cause insulin resistance through separate mechanisms, involving resistin and adiponectin, respectively.

PMID:
12538610
DOI:
10.1210/en.2002-220623
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center