Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 2003 Feb;23(3):1061-74.

Inhibition of IkappaB kinase by a new class of retinoid-related anticancer agents that induce apoptosis.

Author information

Sidney Kimmel Cancer Center, Department of Pharmacology, University of California-San Diego School of Medicine, San Diego, California, USA.


The transcription factor NF-kappaB is overexpressed or constitutively activated in many cancer cells, where it induces expression of antiapoptotic genes correlating with resistance to anticancer therapies. Small molecules that inhibit the NF-kappaB signaling pathway could therefore be used to induce apoptosis in NF-kappaB-overexpressing tumors and potentially serve as anticancer agents. We found that retinoid antagonist MX781 inhibited the activation of NF-kappaB-dependent transcriptional activity in different tumor cell lines. MX781 was able to completely inhibit tumor necrosis factor alpha-mediated activation of IkappaB kinase (IKK), the upstream regulator of NF-kappaB. Inhibition of IKK activity resulted from direct binding of MX781 to the kinase, as demonstrated by in vitro inhibition studies. Two other molecules, MX3350-1 and CD2325, which are retinoic acid receptor gamma-selective agonists, were capable of inhibiting IKK in vitro, although they exerted variable inhibition of IKK and NF-kappaB activities in intact cells in a cell type-specific manner. However, N-(4-hydroxyphenyl)-retinamide, another apoptosis-inducing retinoid, and retinoic acid as well as other nonapoptotic retinoids did not inhibit IKK. Inhibition of IKK by the retinoid-related compounds and other small molecules correlated with reduced cell proliferation and increased apoptosis. Reduced cell viability was also observed after overexpression of an IKKbeta kinase-dead mutant or the IkappaBalpha superrepressor. The induction of apoptosis by the retinoid-related molecules that inhibited IKK was dependent on caspase activity but independent of the retinoid receptors. Thus, the presence of an excess of retinoic acid or a retinoid antagonist did not prevent the inhibition of IKK activation by MX781 and CD2325, indicating a retinoid receptor-independent mechanism of action.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center