Send to

Choose Destination
Hear Res. 2003 Jan;175(1-2):200-14.

Electrode configuration influences action potential initiation site and ensemble stochastic response properties.

Author information

Department of Otolaryngology, Head and Neck Surgery, University of Iowa, Hospitals and Clinics, 21201 PFP, 200 Hawkins Drive, Iowa City, IA 52242, USA.


The configuration of intracochlear electrodes used to electrically stimulate the auditory nerve influences the ensemble fiber response. For example, monopolar stimulation produces lower thresholds and greater spread of excitation than does bipolar stimulation. We used two approaches to investigate how the ensemble of auditory-nerve fibers responds to stimulation delivered by different electrode configurations. As the electrically evoked compound action potential (ECAP) reflects the ensemble response of the nerve, we used its morphology and changes with stimulus level to assess issues related to site-of-excitation and fiber recruitment. In our first approach, feline ECAPs were obtained using a nucleus-style banded electrode array. ECAP latency functions indicated that bipolar stimulation can initiate action potentials at more peripheral sites than does monopolar stimulation. We observed double-peaked ECAPs with bipolar and tripolar stimulation, suggesting excitation of both peripheral and central neural processes. Finally, we observed in some cases a tendency for monopolar stimulation to produce wider ECAP potentials, consistent with the notion that monopolar stimulation excites a broader spatial extent of the fiber population. In our second approach, we applied a simple model to published surveys of single-fiber responses to provide insight into the stochastic properties of the ensemble response. Our results suggest that broader recruitment of fiber activity produced by monopolar stimulation results in a population response with more probabilistic response characteristics and ensemble spike jitter. These observations and our ECAP results are consistent with reports of perceptual advantages attributed to monopolar or other less-focused modes of stimulation.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center