Format

Send to

Choose Destination
See comment in PubMed Commons below
Genetics. 2002 Dec;162(4):2007-15.

The influence of linkage and inbreeding on patterns of nucleotide sequence diversity at duplicate alcohol dehydrogenase loci in wild barley (Hordeum vulgare ssp. spontaneum).

Author information

1
Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA. jzlin88@yahoo.com

Abstract

Patterns of nucleotide sequence diversity are analyzed for three duplicate alcohol dehydrogenase loci (adh1-adh3) within a species-wide sample of 25 accessions of wild barley (Hordeum vulgare ssp. spontaneum). The adh1 and adh2 loci are tightly linked (recombination fraction <0.01) while the adh3 locus is inherited independently. Wild barley is predominantly self-fertilizing (approximately 98%), and as a consequence, effective recombination is restricted by the extreme reduction in heterozygosity. Large reductions in effective recombination, in turn, widen the conditions for linkage to influence nucleotide sequence diversity through the action of selective sweeps or background selection. These considerations would appear to predict (1) homogeneity in patterns of nucleotide sequence diversity, especially between closely linked loci, and (2) extensive linkage disequilibrium relative to random-mating species. In contrast to these expectations, the wild barley data reveal heterogeneity in patterns of nucleotide sequence diversity and levels of linkage disequilibrium that are indistinguishable from those observed at adh1 in maize, an outbreeding grass species.

PMID:
12524366
PMCID:
PMC1462393
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center