Send to

Choose Destination
Biophys J. 2003 Jan;84(1):533-44.

Cooperativity in forced unfolding of tandem spectrin repeats.

Author information

Biophysical Engineering Lab, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia 19104, USA.


Force-driven conformational changes provide a broad basis for protein extensibility, and multidomain proteins broaden the possibilities further by allowing for a multiplicity of forcibly extended states. Red cell spectrin is prototypical in being an extensible, multidomain protein widely recognized for its contribution to erythrocyte flexibility. Atomic force microscopy has already shown that single repeats of various spectrin family proteins can be forced to unfold reversibly under extension. Recent structural data indicates, however, that the linker between triple-helical spectrin repeats is often a contiguous helix, thus raising questions as to what the linker contributes and what defines a domain mechanically. We have examined the extensible unfolding of red cell spectrins as monomeric constructs of just two, three, or four repeats from the actin-binding ends of both alpha- and beta-chains, i.e., alpha(18-21) and beta(1-4) or their subfragments. In addition to single repeat unfolding evident in sawtooth patterns peaked at relatively low forces (<50 pN at 1 nm/ms extension rates), tandem repeat unfolding is also demonstrated in ensemble-scale analyses of thousands of atomic force microscopy contacts. Evidence for extending two chains and loops is provided by force versus length scatterplots which also indicate that tandem repeat unfolding occurs at a significant frequency relative to single repeat unfolding. Cooperativity in forced unfolding of spectrin is also clearly demonstrated by a common force scale for the unfolding of both single and tandem repeats.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center