Send to

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2003 Jan 15;125(2):588-93.

Toward a glucose biosensor based on surface-enhanced Raman scattering.

Author information

Department of Biomedical Engineering, Northwestern University Evanston, Illinois 60208-3113, USA.


This work presents the first step toward a glucose biosensor using surface-enhanced Raman spectroscopy (SERS). Historically, glucose has been extremely difficult to detect by SERS because it has a small normal Raman cross section and adsorbs weakly or not at all to bare silver surfaces. In this paper, we report the first systematic study of the direct detection of glucose using SERS. Glucose is partitioned into an alkanethiol monolayer adsorbed on a silver film over nanosphere (AgFON) surface and thereby, it is preconcentrated within the 0-4 nm thick zone of electromagnetic field enhancement. The experiments presented herein utilize leave-one-out partial least-squares (LOO-PLS) analysis to demonstrate quantitative glucose detection both over a large (0-250 mM) and clinically relevant (0-25 mM) concentration range. The root-mean-squared error of prediction (RMSEP) of 1.8 mM (33.1 mg/dL) in the clinical study is near that desired for medical applications (1 mM, 18 mg/dL). Future studies will advance toward true in vivo, real time, minimally invasive sensing.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center