Format

Send to

Choose Destination
Anim Biotechnol. 2002 Nov;13(2):211-22.

Generation of expressed sequence tags from a normalized porcine skeletal muscle cDNA library.

Author information

1
Department of Animal Science and Center for Animal Functional Genomics, Michigan State University, East Lansing, MI 48824, USA. yaoj@msu.edu

Abstract

Recent developments in microarray technologies permit scientists to analyze expression of thousands of genes simultaneously in diverse biological systems. In an effort to provide integrated resources for application of microarray technologies to studies of skeletal muscle growth and development in swine, we have constructed a normalized cDNA library from porcine skeletal muscle. The effectiveness of normalization was evaluated by DNA sequencing of clones randomly picked from the library before and after normalization, and also by Southern blot hybridization using probes representing abundant transcripts. Our data suggests that the normalization procedure successfully reduced the highly abundant cDNA species in the normalized library. To date, a total of 782 EST (expressed sequence tag) sequences have been generated from this normalized library (687 ESTs) and the original library (95 ESTs). The sequence information of these ESTs plus their BLAST results has been made available through a web accessible database (http://nbfgc.msu.edu). Cluster analysis of the data indicates that a total of 742 unique sequences are present in this collection. BLASTN search of the 742 EST sequences against the public database (dbEST) revealed that 139 had no significant matches (E-value > 10(-15)) to porcine ESTs already entered in the database, suggesting the possibility of their specific expression in porcine skeletal muscle. Generation of non-redundant ESTs from this library will allow us to construct cDNA microarrays for identification of gene expression changes that regulate muscle growth and affect meat quality in swine.

PMID:
12517075
DOI:
10.1081/ABIO-120016190
[Indexed for MEDLINE]

Publication type, MeSH terms, Substance, Secondary source ID

Publication type

MeSH terms

Substance

Secondary source ID

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center