Send to

Choose Destination
See comment in PubMed Commons below
J Exp Med. 2003 Jan 6;197(1):111-9.

CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms.

Author information

  • 1Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom.


CD4(+)CD25(+) regulatory T (T(R)) cells can inhibit a variety of autoimmune and inflammatory diseases, but the precise mechanisms by which they suppress immune responses in vivo remain unresolved. Here, we have used Helicobacter hepaticus infection of T cell-reconstituted recombination-activating gene (RAG)(-/-) mice as a model to study the ability of CD4(+)CD25(+) T(R) cells to inhibit bacterially triggered intestinal inflammation. H. hepaticus infection elicited both T cell-mediated and T cell-independent intestinal inflammation, both of which were inhibited by adoptively transferred CD4(+)CD25(+) T(R) cells. T cell-independent pathology was accompanied by activation of the innate immune system that was also inhibited by CD4(+)CD25(+) T(R) cells. Suppression of innate immune pathology was dependent on T cell-derived interleukin 10 and also on the production of transforming growth factor beta. Thus, CD4(+)CD25(+) T(R) cells do not only suppress adaptive T cell responses, but are also able to control pathology mediated by innate immune mechanisms.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center