Format

Send to

Choose Destination
See comment in PubMed Commons below

Molecular techniques for studying gene expression in carcinogenesis.

Author information

1
Department of Radiation Oncology, Leo W Jenkins Cancer Center, The Brody School of Medicine, East Carolina University, Greenville, NC 27858. ahmedf@mail.ecu.edu

Abstract

Many genes and signaling pathways controlling cell proliferation, death, differentiation, and genomic integrity are involved in cancer development. Various methods are available for detection and quantification of messenger RNA. Older methods such as Northern blots, nuclease protection, plaque hybridization, and slot blots suffer from being inherently serial, measure a single mRNA at a time, or being difficult to automate. New techniques for analysis of gene expression include: (a) comprehensive open systems such as serial analysis of gene expression (SAGE), differential display (DD) analysis, RNA arbitrarily primer (RAP)-PCR, restriction endonucleolytic analysis of differentially expressed sequences (READS), amplified restriction fragment-length polymorphism (AFLP), total gene expression analysis (TOGA), and use of internal standard competitive template primers (CTs) in a quantitative multiplex RT-PCR method [StaRT-(PCR)], and (b) focused closed systems such as: high density cDNA filter hybridization (HDFCA) analysis, suppression subtractive hybridization (SSH), differential screening (DS), several forms of high-density cDNA arrays, or oligonucleotide chips, and tissue microarrays. Sometimes, a combination of these systems is used to enhance the sensitivity and specificity of the assays. While closed systems are excellent for the initial screening of large number of sequences, the value of the information generated is generally limited to an often arbitrarily chosen known sequence. On the other hand, only the open system platform has the potential to evaluate the expression patterns of tens of thousands of genes that have not yet been cloned or partially sequenced in a quantitative manner. A cost analysis of the most commonly used expression technologies is provided. A method for purifying tumors from surrounding stroma and normal tissue employing laser microdissection, and subsequent RNA isolation/amplification from few cells employing sensitive kits are also discussed.

PMID:
12515671
DOI:
10.1081/GNC-120016201
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center