Format

Send to

Choose Destination
See comment in PubMed Commons below
J Nutr. 2003 Jan;133(1):38-44.

Plant-derived monoterpenes suppress hamster kidney cell 3-hydroxy-3-methylglutaryl coenzyme a reductase synthesis at the post-transcriptional level.

Author information

1
Dennis M. Peffley, University of Health Sciences, Department of Biochemistry, Kansas City, MO 64106-1453, USA. dpeffley@uhs.edu

Abstract

The rate-limiting enzyme for mevalonate and cholesterol synthesis in mammalian cells is 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase. Control occurs through both transcriptional and post-transcriptional actions signaled by the end product, cholesterol, and by isoprenoid intermediates. End products of plant mevalonate metabolism, i.e., plant-derived isoprenoids, also suppress mammalian HMG-CoA reductase. Previous studies reported that isoprenoids suppress reductase synthesis at a post-transcriptional level. We tested the hypothesis that plant-derived isoprenoids also regulate mammalian HMG-CoA reductase synthesis at a post-transcriptional level by incubating lovastatin-treated C100 cells with mevalonate or a plant-derived isoprenoid (the monoterpenes, limonene, perillyl alcohol or geraniol) either alone or combined with the oxysterol, 25-hydroxycholesterol (25-OH C). Mevalonate decreased HMG-CoA reductase synthesis and mRNA levels by 65 and 66%, respectively (P < 0.05). The cyclic monoterpenes, limonene and perillyl alcohol, lowered HMG-CoA reductase synthesis by 70 and 89%, respectively (P < 0.05); although neither reduced HMG-CoA reductase mRNA levels (P = 0.88). Geraniol, an acyclic monoterpene, suppressed HMG-CoA reductase synthesis by 98% and lowered mRNA levels by 66% (P < 0.05). A combination of 25-OH C and either mevalonate or any three monoterpenes reduced HMG-CoA reductase mRNA levels (P < 0.05) compared with lovastatin-only treated cells. However, the dual combination of 25-OH C and either mevalonate or a monoterpene resulted in a greater decrease in HMG-CoA reductase synthesis than in mRNA levels. The difference between changes in HMG-CoA reductase synthesis and mRNA levels reflects a specific effect of isoprenoids on HMG-CoA reductase synthesis at the translational level. Mevalonate enhanced HMG-CoA reductase degradation, but no such effect was observed for the monoterpenes. These results indicate that the three plant-derived isoprenoids primarily suppress HMG-CoA reductase synthesis at a post-transcriptional level by attenuating HMG-CoA reductase mRNA translational efficiency.

PMID:
12514264
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center