Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2003 Jan 1;23(1):103-11.

Local and global spontaneous calcium events regulate neurite outgrowth and onset of GABAergic phenotype during neural precursor differentiation.

Author information

  • 1Laboratory of Molecular Signalling, The Babraham Institute, Babraham, Cambridge CB2 4AT, United Kingdom.

Abstract

Neural stem cells can generate in vitro progenitors of the three main cell lineages found in the CNS. The signaling pathways underlying the acquisition of differentiated phenotypes in these cells are poorly understood. Here we tested the hypothesis that Ca(2+) signaling controls differentiation of neural precursors. We found low-frequency global and local Ca(2+) transients occurring predominantly during early stages of differentiation. Spontaneous Ca(2+) signals in individual precursors were not synchronized with Ca(2+) transients in surrounding cells. Experimentally induced changes in the frequency of local Ca(2+) signals and global Ca(2+) rises correlated positively with neurite outgrowth and the onset of GABAergic neurotransmitter phenotype, respectively. NMDA receptor activity was critical for alterations in neuronal morphology but not for the timing of the acquisition of the neurotransmitter phenotype. Thus, spontaneous Ca(2+) signals are an intrinsic property of differentiating neurosphere-derived precursors. Their frequency may specify neuronal morphology and acquisition of neurotransmitter phenotype.

PMID:
12514206
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center