Send to

Choose Destination
See comment in PubMed Commons below
DNA Repair (Amst). 2002 Apr 29;1(4):261-73.

Repair of 8-oxoG is slower in endogenous nuclear genes than in mitochondrial DNA and is without strand bias.

Author information

Danish Center for Molecular Gerontology, Department of Molecular and Structural Biology, Aarhus University, Aarhus, Denmark.


DNA is vulnerable to the attack of certain oxygen radicals and one of the major DNA lesions formed is 7,8-dihydro-8-oxoguanine (8-oxoG), a highly mutagenic lesion that can mispair with adenine. The repair of 8-oxoG was studied by measuring the gene specific removal of 8-oxoG after treatment of Chinese hamster ovary (CHO) fibroblasts with the photosensitizer Ro19-8022. This compound introduces 8-oxoG lesions, which can then be detected with the Escherichia coli formamidopyrimidine DNA glycosylase (FPG). In this report we present gene specific repair analysis of endogenous genes situated in different important cellular regions and also the first analysis of strand specific DNA repair of 8-oxoG in an endogenous gene. We were not able to detect any preferential repair of transcribed genes compared to non-transcribed regions and we did not detect any strand-bias in the repair of the housekeeping gene, dihydrofolate reductase (DHFR). In vivo, mitochondrial DNA is highly exposed to reactive oxygen species (ROS), and we find that the repair of 8-oxoG is more efficient in the mitochondrial DNA than in the nuclear DNA.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center